
Cambridge Books Online

http://ebooks.cambridge.org/

Lévy Statistics and Laser Cooling

How Rare Events Bring Atoms to Rest

François Bardou, Jean-Philippe Bouchaud, Alain Aspect, Claude Cohen-Tannoudji

Book DOI: http://dx.doi.org/10.1017/CBO9780511755668

Online ISBN: 9780511755668

Hardback ISBN: 9780521808217

Paperback ISBN: 9780521004220

Chapter

4 - Broad distributions and Lévy statistics: a brief overview pp. 42-5

9

Chapter DOI: http://dx.doi.org/10.1017/CBO9780511755668.005

Cambridge University Press



4

Broad distributions and Lévy statistics: a brief overview

In this chapter, we introduce the main concepts and tools of Lévy statistics that
will be used in subsequent chapters in the context of laser cooling. In Section 4.1,
we show how statistical distributions with slowly decaying power-law tails can
appear in a physical problem. Then, in Section 4.2, we introduce the generalized
Central Limit Theorem enabling one to handle statistically ‘Lévy sums’, i.e. sums
of independent random variables, the distributions of which have power-law tails.
We also sketch, in a part that can be skipped at first reading, the proof of the
theorem and present a few mathematical properties concerning distributions with
power-law tails and Lévy distributions. In Section 4.3, we present some properties
of Lévy sums which will turn out to be crucial for the physical discussion pre-
sented in subsequent chapters: the scaling behaviour, the hierarchy and fluctuation
problems. These properties are illustrated using numerical simulations. Finally, in
Section 4.4, we present the distribution S(t), called the ‘sprinkling distribution’.
This distribution presents unexpected features and will play an essential role in the
following chapters.

4.1 Power-law distributions. When do they occur?

Situations where broad distributions appear and where rare events play a dominant
role are more and more frequently encountered in physics, as well as in many
other fields, such as geology, economy and finance. The term ‘broad distributions’
usually refers to distributions decaying very slowly for large deviations, typically as
a power law, implying that some moments of the distribution are formally infinite.

The paradigm problem concerning these types of random variables is the be-
haviour of the sum of a large number of them. For example, in the problem of
interest here, the total experimental time can be decomposed into a sum of the
time intervals corresponding to the trapping region and to the external region.
Precise theorems govern the properties of these sums, generalizing the well known

42
Downloaded from Cambridge Books Online by IP 128.178.195.120 on Fri Mar 29 12:58:02 WET 2013.

http://dx.doi.org/10.1017/CBO9780511755668.005
Cambridge Books Online © Cambridge University Press, 2013



4.1 Power-law distributions 43

(Gaussian) Central Limit Theorem (CLT). We shall not state these results in full
generality (the reader can consult [GnK54, BoG90]), but rather focus on the case
relevant to our purpose. We shall thus restrict our discussion to positive random
variables τ (representing random times), distributed for large τ as:

P(τ ) 

τ→∞

µτ
µ

b

τ 1+µ
(4.1)

where τb sets the scale of the phenomenon, and µ is an exponent describing how
fast the distribution decays to 0. (The extra factor µ in the numerator is included
for later convenience.) To normalize the distribution P , µ > 0 is required. All
the moments 〈τ q〉 = ∫∞

0 dτ τ q P(τ ) such that q ≥ µ are divergent. The most
interesting case, as we shall see below, is the case where µ ≤ 1, for which the
mean value 〈τ 〉 of τ is infinite.

When do such power-law distributions occur? They sometimes result from the
highly complex underlying dynamics of the physical system, as in chaotic systems
[KSZ96, Zas99], and models of avalanches or earthquakes [Bak96, BoC97].

Another frequent scenario for creating power-law distributions is a change of
variable. A first variable a, which is naturally sampled by the physical process, is
distributed according to a law which may be of any type (Gaussian, exponential,
uniform, . . . ), but the distribution of a related physical quantity b = f (a) turns
out to be a power law for certain types of (non-linear) functions f (a). A first
example of such a situation was given in Section 3.3. While the probability of
reaching a small momentum p is approximately uniform, the lifetime τ ∝ p−α of
the corresponding p states is distributed according to a power law, thus leading to
eq. (4.1) with µ = D/α.

Another interesting example arising from a change of variable is thermal activa-
tion out of a deep potential valley [Shl88, BoD95]. The Arrhenius law states that
the average exit time τ is proportional to τ0exp(E/kBT ), where E is the energy
barrier, T the temperature and τ0 a typical time. In disordered systems, the barriers
E are themselves random variables which are often distributed according to an
exponential law: �(E) = E−1

0 exp(−E/E0). The resulting distribution P(τ ) of
exit times τ , which is given by P(τ )dτ = �(E)dE with τ = τ0exp(E/kBT ), is
thus equal to

P(τ ) = 1

E0
exp

(
− E

E0

)
kBT

τ0
exp

(
− E

kBT

)
= kBT

E0

τ
µ

0

τ 1+µ
. (4.2)

We get an expression similar to (4.1) with µ = kBT/E0 and τb = τ0. Interestingly,
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44 Broad distributions and Lévy statistics

for kBT < E0, the average relaxation time is infinite, leading to strongly anomalous
dynamics (see below, and [Bou92, BoD95, BCK97, Bou00]).

Notice that the above derivation of eq. (4.2) assumes that the exit times τ are determin-
istically fixed by the height E of the barrier. In parallel with the results of Chapter 3
(Section 3.3.1), the result (4.2) is not dramatically altered if the exit times are distributed
as an exponential with an average given by the Arrhenius law.

4.2 Generalized Central Limit Theorem

4.2.1 Lévy sums. Asymptotic behaviour and Lévy distributions

Let TN be the sum of N independent positive random variables, all distributed
according to the distribution P(τ ) of eq. (4.1):

TN =
N∑

i=1

τi . (4.3)

When µ > 2, the usual form of the CLT is valid since both the mean value 〈τ 〉
and the variance σ 2 = 〈τ 2〉 − 〈τ 〉2 exist. Defining a new variable ξ by

TN = 〈τ 〉N + σ
√

N ξ, (4.4)

the CLT then says that, for large N , ξ tends to a dimensionless Gaussian random
variable with zero mean value and unit variance, i.e. it is distributed according to
G(ξ) = (2π)−1/2 exp(−ξ 2/2) (‘normal’ distribution). More precisely, one has,
independently of the shape of P(τ ):

lim
N→∞

P
(
ξ1 ≤ TN − 〈τ 〉N

σ
√

N
≤ ξ2

)
=
∫ ξ2

ξ1

dξ G(ξ). (4.5)

We note that the second (fluctuating) term in eq. (4.4) is negligible compared to the
first one when N → ∞.

For µ < 2, the mean value 〈τ 〉 and/or the variance σ 2 diverge and eq. (4.5) is
no longer valid. The CLT has been generalized by Lévy and Gnedenko, and gives
results which are independent of the detailed shape of P(τ ) and which depend only
on the long time behaviour described by eq. (4.1). The sums TN are called ‘Lévy
sums’. We now state a few important results concerning the asymptotic behaviour
of these Lévy sums (for large N ). A sketch of the proof of these results will be
presented in the next section, using the properties of the Laplace transforms of
functions with power-law tails.

The generalized CLT takes two different forms for 1 < µ < 2 and for µ < 11.

1 Logarithmic corrections appear in the cases µ = 1 and µ = 2, requiring a separate discussion (see Ap-
pendix C).
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4.2 Generalized Central Limit Theorem 45

Consider first the case 1 < µ < 2, where τ has a finite mean value 〈τ 〉 but an
infinite variance. If we introduce a new variable ξ by

1 < µ < 2: TN = 〈τ 〉N + ξτb N 1/µ, (4.6)

then the generalized CLT states that ξ is a random variable of order one, distributed
for large N according to a function Lµ(ξ) which depends only on µ and which is
called the ‘completely asymmetric’ Lévy distribution of index µ2. More precisely,
we can write

lim
N→∞

P
(
ξ1 ≤ TN − 〈τ 〉N

τb N 1/µ
≤ ξ2

)
=
∫ ξ2

ξ1

d ξ Lµ(ξ). (4.7)

Note that the second (fluctuating) term in eq. (4.6) is still negligible compared
with the first when N → ∞. The Lévy distributions Lµ(ξ) have simple Laplace
transforms3:

LLµ(u) =
∫ ∞

0
d ξ Lµ(ξ)e

−u ξ = exp(−bµuµ) with bµ = (µ − 1)�(1 − µ)

µ
.

(4.8)

In the case µ < 1, both the mean value and the variance of τ diverge and one
finds that TN grows faster than the number of terms N . Equation (4.6) has to be
replaced by

µ < 1: TN = ξτb N 1/µ, (4.9)

and one finds that ξ is again a random variable of order one, distributed for large
N according to a Lévy distribution Lµ(ξ), whose Laplace transform is now:

LLµ(u) =
∫ ∞

0
d ξ Lµ(ξ)e

−u ξ = exp(−bµuµ) with bµ = �(1 − µ). (4.10)

The analogue of eq. (4.7) is:

lim
N→∞

P
(
ξ1 ≤ TN

τb N 1/µ
≤ ξ2

)
=
∫ ξ2

ξ1

d ξ Lµ(ξ). (4.11)

4.2.2 Sketch of the proof of the generalized CLT

We try now to give an idea of the mathematical properties leading to the very simple
forms (4.8) and (4.10) for the Laplace transforms of the Lévy distributions Lµ(ξ).

The fact that Laplace transforms play an important role in this problem is easy

2 Since τ is positive, Lµ is actually a particular case (‘completely asymmetric’) of more general Lévy distribu-
tions, which arise when the random variable involved in the summation has power-law tails both at +∞ and
at −∞.

3 We denote the Laplace transform of f by L f .
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46 Broad distributions and Lévy statistics

to understand. Let �N (TN ) be the probability distribution of the Lévy sum TN . It
can be written:

�N (TN ) =
∫

dτ1 . . . dτN P(τ1) . . . P(τN ) δ

(
N∑

i=1

τi − TN

)
(4.12)

where the constraint on the value of the sum is imposed through a δ-function. In
fact, the right-hand side of eq. (4.12) is a convolution product of N functions P(τ ),
so that the Laplace transform L�N (s) of �N (TN ) is nothing but the N th power of
the Laplace transform LP(s) of P(τ )4:

L�N (s) =
[∫ ∞

0
dτ P(τ )e−sτ

]N

= [LP(s)]N . (4.13)

We now use the fact that P(τ ) is a probability distribution, i.e. takes positive values
and is normalized to one. This implies that LP(s) ≤ 1 for any s ≥ 0, the upper
bound being obtained for s = 0. Since LP(s) is raised to a high power N in
eq. (4.13), one expects that L�N (s), which is equal to one for s = 0, will be
appreciable only in the neighbourhood of s = 0. This explains the importance in
this problem of the small-s behaviour of LP(s), which is itself determined by the
long-τ behaviour of P(τ ).

We will focus here on distributions (4.1) with µ < 1. We suppose in addition
that the subleading corrections to eq. (4.1) decay faster than τ−2 for large τ . One
can then show that the small-s behaviour of their Laplace transforms LP(s) is
given by

LP(s) =
s→0

1 − �(1 − µ) (τbs)µ − A0τbs + · · · (4.14)

where A0 is a constant. In view of its importance here, a brief proof of this result
will be given in point (ii) of Section 4.2.3.

Using eq. (4.13), one gets:

L�N (s) =
s→0

[
1 − �(1 − µ) (τbs)µ + O(τbs)

]N
. (4.15)

Setting ŝ = s τb N 1/µ, one obtains

L�N

(
s = ŝ

τb N 1/µ

)
=

s→0

(
1 − �(1 − µ)

ŝµ

N
+ O(ŝ)

N 1/µ

)N

. (4.16)

4 Note that in eq. (4.13) s is conjugate to a time variable, TN or τ , so that it has the dimension of the inverse of
time, whereas in eqs. (4.8) and (4.10) the conjugate variables ξ and u are both dimensionless.
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4.2 Generalized Central Limit Theorem 47

Taking the limit N → ∞ and s → 0, with ŝ fixed, gives

L�N

(
s = ŝ

τb N 1/µ

)
=

s→0
exp

[
N ln

(
1 − �(1 − µ)

ŝµ

N
+ O(ŝ)

N 1/µ

)]
−→
N→∞

exp

(
−�(1 − µ)ŝµ + O(ŝ)

N 1/µ−1

)
−→
N→∞

exp
[−�(1 − µ)ŝµ

]
, (4.17)

since µ < 1. Using the definition of L�N (s) = ∫
e−sTN �N (TN ) dTN , the change

of variable ξ = TN/τb N 1/µ and the relation P (ξ) dξ = �N (TN ) dTN , the above
calculation directly shows that LLµ(u) given by eq. (4.10) is indeed the Laplace
transform of the distribution of ξ at large N .

4.2.3 A few mathematical results

We gather in this subsection a few useful mathematical results which are referred to in
this chapter. This part can be skipped at first reading.

A few properties of the Laplace transforms of functions with power-law tails

(i) Suppose first that µ > 1 so that 〈τ 〉 is finite. For s → 0, one can then write

LP(s) =
∫ ∞

0
dτ P(τ )e−sτ



s→0

∫ ∞

0
dτ P(τ )(1 − sτ) = 1 − s〈τ 〉. (4.18)

We will come back to the higher-order terms of the small-s expansion of LP(s)
(see eq. (4.23)).

(ii) If µ < 1, the previous expression is no longer valid because 〈τ 〉 is infinite. We
rewrite e−sτ in the first line of eq. (4.18) as 1 + e−sτ − 1, so that

LP(s) =
∫ ∞

0
dτ P(τ )(1 + e−sτ − 1)

= 1 +
∫ ∞

0
dτ P(τ )(e−sτ − 1). (4.19)

Let τ ∗ be the value of τ beyond which the asymptotic expression (4.1) is correct.
The integral of the last line of eq. (4.19) from 0 to ∞ can be split into an integral
from 0 to τ ∗ and an integral from τ ∗ to ∞. Since

∣∣e−sτ − 1
∣∣ < sτ , one has:∣∣∣∣∣

∫ τ∗

0
dτ P(τ )(e−sτ − 1)

∣∣∣∣∣ < s
∫ τ∗

0
dτ τ P(τ ) < τ ∗s

∫ τ∗

0
dτ P(τ )

< τ ∗s
∫ ∞

0
dτ P(τ ) < τ ∗s. (4.20)
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48 Broad distributions and Lévy statistics

Thus, when s tends to 0, more precisely when s � 1/τ ∗, the integral from 0 to
τ ∗ is at most of order O(τ ∗s). In the integral from τ ∗ to ∞, we replace P(τ ) by
its asymptotic form (4.1) and we perform integration by parts. This gives, putting
x = s τ :∫ ∞

τ∗
dτ P(τ )(e−sτ − 1) = µ(τbs)µ

∫ ∞

τ∗s
dx x−(1+µ)(e−x − 1)

= (τbs)µ(e−τ∗s − 1)(τ ∗s)−µ − (τbs)µ
∫ ∞

sτ∗
dx x−µe−x . (4.21)

Combining the last line of eq. (4.21) with eq. (4.20), we obtain

LP(s) 

s→0

1 − �(1 − µ) (τbs)µ − A0τbs + · · · (4.22)

where A0 is a constant depending on the detailed shape of P(τ ). This is nothing
but eq. (4.14).

If we subtract from P(τ ) its asymptotic behaviour (4.1), we are left with a new
function P̃(τ ) which decays faster than τ−(1+µ) at large τ . If it decays faster
than τ−2, the integral

∫∞
0 dτ τ P̃(τ ) converges and a calculation similar to that of

eq. (4.18) gives a term of order O(s τ ∗) when s → 0. Combined with similar
contributions of the same order from eq. (4.20) and eq. (4.21), this gives the last
term of the right-hand side of eq. (4.22).

(iii) If µ had been larger than one, but different from any integer5, the small-s expansion
of LP(s) would have taken the following form:

LP(s) = 1 − M1s + M2

2!
s2 + · · · + (−1)n Mn

n!
sn − Cµsµ − · · · (4.23)

where n is the integer value of µ, and the Mi are the moments of P(τ ) (for example,
M1 = 〈τ 〉 is the mean value of τ ). In other words, the small-s expansion is regular
up to its nth term, until the power-law singularity is met. Conversely, the knowledge
of LP(s) for small s allows one to extract the power-law behaviour of P(τ ) for
large τ .

(iv) Actually, one should also note that eq. (4.14) can be extended to the case where
P(τ ) is not a normalizable probability density and varies as Cτ−(1−ν) at large
τ with ν > 0. Such a case was encountered in Chapter 3, Section 3.4.2: the
probability of an atom being present at the starting point of a three-dimensional
random walk decays as τ−1/2, corresponding to ν = 1/2. In this case, calculations
similar to the previous ones show that the leading term of LP(s) for small s reads:

LP(s) = �(ν)Cs−ν + A + · · · (4.24)

where A is a constant, again depending on the detailed shape of P(τ ).

A few properties of Lévy distributions

We now list without proofs a few important properties of Lµ(ξ), defined in eqs. (4.8)
and (4.10), remembering that we are restricting ourselves to the case of positive random
variables.

5 Again, if µ is an integer, logarithmic corrections appear, see Appendix C.
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4.3 Some properties of Lévy sums 49

(i) For µ = 2, Lµ(ξ) reduces to the usual Gaussian distribution G(ξ) =
(2π)−1/2 exp(−ξ2/2).

(ii) For 0 < µ < 2 and ξ → ∞, Lµ(ξ) decays as a power law with the same exponent
as P(τ ):

Lµ(ξ) 

ξ→+∞

µ

ξ1+µ
+ O

(
1

ξ1+2µ

)
. (4.25)

(iii) For µ < 1, Lµ(ξ) is obviously 0 for ξ < 0 and has an essential singularity for
ξ → 0:

Lµ(ξ) 

ξ→0

A ξ
µ−2

2(1−µ) exp
(
−B ξ

µ
µ−1

)
(4.26)

where A and B are prefactors.
(iv) For µ = 1/2, an explicit expression can be given for all ξ :

L1/2(ξ) = Y (ξ)
1

2ξ3/2
exp

(
− π

4ξ

)
(4.27)

where Y (ξ) is the Heaviside function. The variations of L1/2(ξ) with ξ are rep-
resented in figure 4.1. All functions Lµ(ξ) with µ < 1 have qualitatively similar
variations. Note that the maximum of L1/2(ξ) is reached for ξ = π/6, which
clearly shows that the dimensionless random variable ξ is of the order of one.

(v) For 1 < µ < 2, Lµ(ξ) describes the fluctuations of TN around the mean value
N 〈τ 〉, and thus extends from −∞ to +∞. The decay of Lµ(ξ) for ξ → −∞ is
however much faster than the power law (4.25), and is given by:

Lµ(ξ) 

ξ→−∞

C ξ
µ−2

2(1−µ) exp
(
−D |ξ | µ

µ−1

)
(4.28)

where C and D are prefactors.
(vi) Only the moments of order q < µ of Lµ(ξ) exist. For µ < 1, an explicit

calculation leads to:

〈ξq〉 ≡
∫ ∞

0
dξ ξq Lµ(ξ) = bq/µ

µ

�(−q/µ)

µ�(−q)
(4.29)

where bµ = �(1 − µ) (see eq. (4.10)).

4.3 Qualitative discussion of some properties of Lévy sums

4.3.1 Dependence of a Lévy sum on the number of terms for µ < 1

One of the most important results of the generalized CLT is that a Lévy sum TN

scales as N 1/µ when µ < 1 (see eq. (4.9)). For example, for µ = 1/2, TN scales
as N 2; for µ = 1/4, as N 4. The smaller µ, the greater the exponent of the power-
law dependence of TN on N . Such behaviour is quite different from that of usual
random variables τ which have a finite mean value 〈τ 〉 and for which TN scales as
N 〈τ 〉 (usual law of large numbers).
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50 Broad distributions and Lévy statistics

0 1 2 3 4 5
ξ

0

0.1

0.2

0.3

0.4

 L
1/

2
(ξ

)

Fig. 4.1. Function L1/2(ξ). After a very slow increase near ξ = 0, L1/2(ξ) reaches a
maximum for ξ = π/6 and then decreases as a power law at large ξ (as 1/(2ξ3/2)).

Such a result is linked to the fact that the probability of having a very large value
of τ in a drawing of the random variable is not negligible when P(τ ) decreases
slowly at large τ . When one increases the number N of trials, larger and larger
values of τ can be obtained, and this explains why the sum TN can grow faster than
N .

4.3.2 Hierarchical structure in a Lévy sum

We now want to address the following questions. Suppose that one orders the
sequence {τ1, τ2, . . . , τN } of the various terms of a Lévy sum TN from the largest
one to the smallest. Let τ (1) be the first one (the largest), τ (2) the next one, . . . ,
τ (n) the nth one. What are the orders of magnitude of these various terms? How do
they scale with N and with n? In other words, is there a hierarchy between these
terms? Is τ (n) much larger than τ (n+1)?

To answer these questions, we first determine the most probable value of τ (n).
Let �(τ (n))dτ be the probability of finding the nth term between τ (n) and τ (n) +dτ .
We have (see also Section 2.1.1 in [Gum58]):

�(τ (n)) = N

(
N − 1

n − 1

)
P(τ (n))

[∫ ∞

τ (n)
dτ P(τ )

]n−1 [
1 −

∫ ∞

τ (n)
dτ P(τ )

]N−n

.

(4.30)

The first term, N , corresponds to the N possible positions of τ (n) in the sequence
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4.3 Some properties of Lévy sums 51

τ1, τ2, . . . , τN . The second term,
(N−1

n−1

)
, counts the different possible ways of

obtaining n − 1 drawings larger than τ (n) and N − n smaller than τ (n). Finally,
the last three terms are the probabilities of drawing values of τ equal to, larger or
smaller than τ (n), respectively, raised to the appropriate power. Using eq. (4.1), one
gets ∫ ∞

τ (n)
dτ P(τ ) =

( τb

τ (n)

)µ

(4.31)

and a simple calculation shows that the most probable value of τ (n), which maxi-
mizes eq. (4.30), is given by:

τ (n) = τb

[
1 + µ N

1 + µ n

]1/µ


 τb

(
N

n

)1/µ

if N , n � 1/µ. (4.32)

A first important result expressed by eq. (4.32) is that the largest term of a Lévy
sum, τ (1), scales with N as τb N 1/µ. This result is valid for any value of µ > 0, in
the limit N → ∞. Interestingly, for µ < 1, one has TN 
 τb N 1/µ according to
eq. (4.9) so that the largest term τ (1) is of the order of the sum itself. A single term
of the Lévy sum can be of the order of the total sum! This is the most important
qualitative property of the Lévy sums for µ < 1: a significant fraction of the total
‘time’ TN is spent in the ‘deepest trap’. This is precisely the situation encountered
in the Monte Carlo simulations described in Chapter 2.

The n-dependence of τ (n) is also very interesting. As soon as n becomes larger
than 1/µ, τ (n) scales with n as n−1/µ. For example, for µ = 1/2, τ (10) is 22 = 4
times larger than τ (20), 32 = 9 times larger than τ (30), and so on. In other words,
there is a strong hierarchy between the various terms of a Lévy sum with µ < 1.
Such a sum is ‘dominated’ by a very small number of terms. If one plots ln τ (n)

versus ln n, one expects, according to eq. (4.32), to get a straight line with a slope
−1/µ. Conversely, when one analyses a set of independent random numbers, it
may be useful to order them and to plot ln τ (n) versus ln n. If one gets a straight
line with a slope −1/µ, this is a good indication that the corresponding random
variable is distributed according to a power-law distribution such as eq. (4.1)6.

It is interesting to compare the previous results, typical of Lévy statistics, with
those corresponding to usual Gaussian statistics where P(τ ) is a ‘narrow’ dis-
tribution for which the CLT is applicable. Take, for example, the exponential

6 A more precise ‘maximum likelihood’ procedure to estimate the exponent µ is known as the Hill estimator,
see [Hil75].
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distribution

P(τ ) = 1

τb
e−τ/τb (4.33)

leading to a simple analytical expression for the value of τ (n) which maximizes eq.
(4.30):

τ (n) = τb ln

(
N

n

)
. (4.34)

Instead of power-law variations with N and n, we obtain now logarithmic varia-
tions which are extremely slow. In other words, there is now no hierarchy between
the various terms of the sum which are all of the same order. An increase of the
size N of the statistical sample leads only to a modest increase of the typical size
of the largest term τ (1).

4.3.3 Large fluctuations

For usual statistics obeying the standard CLT (finite 〈τ 〉 and 〈τ 2〉), the sample
to sample fluctuations of the sum TN vanish when the size of the sample, i.e.
the number of terms N , increases. More precisely, let us consider the relative
fluctuations σr(N ) of the average value for a sample of size N defined by7:

σr(N ) = 〈|(TN/N ) − 〈τ 〉|〉
〈τ 〉 = 〈|TN − N 〈τ 〉|〉

N 〈τ 〉 . (4.35)

According to eqs. (4.4) and (4.5), the variable (TN − N 〈τ 〉)/(σ√
N ) is of order one

when N � 1 and a simple calculation leads to

〈τ 2〉 < ∞: σr(N ) 
 σ

〈τ 〉√N
. (4.36)

These fluctuations tend to zero when N tends to infinity. This guarantees an
asymptotically perfect repeatability of average values in the limit of large samples.
In other words, average values can be accurately predicted for large samples, even
if individual values fluctuate a lot. This is the origin of the traditional success of
statistical methods in both natural and social sciences.

For Lévy statistics, the situation can be radically different. For 1 < µ < 2, a
simple calculation using eq. (4.6) leads to

1 < µ < 2: σr(N ) 
 τb/(〈τ 〉N 1−1/µ). (4.37)

The relative fluctuations of the average value again vanish8 at large N , although

7 We take an absolute value instead of a root mean square to avoid divergencies for the case 1 < µ < 2
considered below.

8 But the fluctuations of the second moment would not vanish.
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4.3 Some properties of Lévy sums 53

more slowly than 1/
√

N . But for 0 < µ < 1, this is no longer true. Since we
can no longer define the relative fluctuations σr(N ) by (4.35) (〈τ 〉 is infinite), we
use the following argument: as the largest term τ (1) is of the order of the sum TN ,
the sum TN fluctuates as much as a single term. Therefore the relative fluctuations
from sample to sample are the same as the fluctuations from term to term, i.e. they
are of order one whatever the size of the sample:

µ < 1: σr(N ) 
 1. (4.38)

As a consequence, the value of the sum TN is not repeatable from one sample
to another sample. The accuracy of the statistical prediction is not improved by
increasing the sample size.

It thus appears that Lévy statistics lead, when µ < 1, to a behaviour which is
radically different from that deduced from the usual CLT [Man82, Man96]. The
usual CLT describes how the fluctuations vanish at large N , whereas the general-
ized CLT (for µ < 1) shows that the fluctuations continue to play an essential role
however large N may be.

Repeatability is unavoidably lost when µ < 1. However, the generalized CLT
still allows some predictability. It predicts the typical, i.e. most probable, values
for the sums TN . Such an order of magnitude prediction is the best that statistical
tools can offer when µ < 1.

It is worth pointing out that the presence in a physical phenomenon of a sum TN

undergoing large fluctuations does not necessarily imply that the phenomenon is on
the whole unrepeatable. Other quantities related to, but different from, TN can still be
accurately predicted even when µ < 1. The physically relevant quantities calculated in
the following chapters are of this kind.

4.3.4 Illustration with numerical simulations

All the spectacular features of Lévy statistics analysed in the previous section
clearly appear in numerical simulations. These numerical simulations are per-
formed in the following way. One makes successive drawings τ1, τ2, . . . , τN , . . .

of the random variable τ distributed according to eq. (4.1), and one plots TN =∑N
i=1 τi versus N , for different values of µ. These sequences are generated using

the same9 sequence x1, x2, . . . , xN , . . . of random numbers uniformly distributed
between 0 and 1, and then defining:

τi = τbx−1/µ
i . (4.39)

9 The use of the same sequence of xi enables one to see the effects of different µ values not blurred by the
statistical fluctuations.

Downloaded from Cambridge Books Online by IP 128.178.195.120 on Fri Mar 29 12:58:02 WET 2013.
http://dx.doi.org/10.1017/CBO9780511755668.005

Cambridge Books Online © Cambridge University Press, 2013



54 Broad distributions and Lévy statistics
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Fig. 4.2. Plot of TN (in units of τb) versus N for µ = 3. The inset shows a zoom of a small
portion of the plot.

One can check that this transformation produces τi values that are distributed
according to eq. (4.1).

Figure 4.2 shows TN (in units of τb) versus N for µ = 3. In this case, 〈τ 〉 is
finite and equal to µτb/(µ − 1) = 1.5 τb (see eq. (3.35)), and one obtains a plot
which looks like a straight line with a slope µ/(µ − 1) = 1.5. In fact, there are
N = 5000 vertical steps in such a plot, but each individual step is so small that it
cannot be distinguished in the full scale figure. Zooming in on a small portion of
the figure reveals these individual steps which appear to be all of the same order
(see inset of figure 4.2).

For µ < 1, when 〈τ 〉 is infinite, the plot has a radically different shape. It looks
like a ‘devil’s staircase’ where a small number of individual large steps are clearly
visible and are of the order of the total sum itself (see, for example, figure 4.3
corresponding to µ = 1/2). When µ is still smaller, for example when µ =
0.1, one nearly sees only a single huge step (see figure 4.4). Between two large
steps, TN remains nearly constant. This is due to the strong hierarchy between the
individual steps (see eq. (4.32)). A few of them are so large that the others can
hardly be distinguished. Note the difference of the vertical scales from figure 4.2
to figure 4.3 and figure 4.4, which reflects the N 1/µ dependence of TN when µ < 1.
Zooming in on a small portion of figure 4.3 and figure 4.4 reveals a structure which
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Fig. 4.3. As figure 4.2, but with µ = 1/2. Note the difference of vertical scale. Contrary
to figure 4.2, a few large steps are clearly visible and are of the order of the total sum. The
same general behaviour appears in the zoom shown in the inset.

has the same shape as the full scale figures (see the insets): one still gets a kind of
‘devil’s staircase’ dominated by a small number of large steps. In other words, the
behaviour of TN versus N is self-similar at all scales.

The hierarchical structure of the various terms of a Lévy sum also appears in
rank ordered histograms where one plots ln τ (n) versus ln n. Figure 4.5 shows such
plots for µ = 3 and µ = 1/2. As expected from the calculations of Section 4.3.2,
one obtains a decrease which is well represented by a straight line with a slope
equal to −1/µ. These straight lines are shown as interrupted lines in the figure.
Note that for µ = 1/2 there are about six orders of magnitude between the largest
term and the smallest term of the sequence.

4.4 Sprinkling distribution

4.4.1 Definition. Laplace transform

In this section, we introduce a probability distribution which will be useful for the
calculations presented in Chapters 5 and 6. Suppose that one makes successive
drawings τ1, τ2, . . . , τn, . . . of the random variable τ distributed according to
eq. (4.1), and let us define a random sequence of events M1, M2, . . . , Mn, . . .
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Fig. 4.4. As figure 4.2, but with µ = 0.1. The hierarchical structure in the Lévy sum is
still more pronounced than in figure 4.3 and the largest term is huge (note the new vertical
scale) and dominates all the others. Here also, the same behaviour appears at all scales (see
the inset).

occurring at times t1, t2, . . . , tn, . . . such that

t1 = τ1, t2 = τ1 + τ2, . . . , tn = tn−1 + τn, . . . . (4.40)

In other words, we introduce a random set of events such that the time intervals
between two successive events is distributed according to P(τ ). This is illustrated
in Fig. 4.6. Averaging over several different realizations of such a random se-
quence, one can then ask the following question: what is the probability density
S(t) of finding an event at time t , disregarding the number of previous events? We
shall call such a distribution the ‘sprinkling distribution’ associated with P(t). It
represents the mean density at time t of the random sequence of events M1, M2,
. . . , Mn , . . . introduced above.

It is easy to find an equation satisfied by S(t). Either the event observed at time
t is the first one which appears, with probability P(t); or an arbitrary number of
events have already occurred before this event, the last one happening at tl < t .
Hence, one has:

S(t) = P(t) +
∫ t

0
dtl P(t − tl)S(tl). (4.41)
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Fig. 4.5. Rank ordered histograms giving ln τ (n) versus ln n for two different values of
µ: µ = 3 and µ = 1/2. The interrupted straight lines give the theoretically predicted
behaviour of a linear decrease with a slope equal to −1/µ.
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Fig. 4.6. Random set of events Mi occurring at times ti , with a distribution P(τ ) for the
time intervals between two successive events.

This equation is readily solved using Laplace transforms, which converts the con-
volution into a simple product and one gets:

LS(s) = LP(s)

1 − LP(s)
. (4.42)

4.4.2 Examples taken from other fields

In this book, the events that will be considered in the next sections, and which will be
characterized by the sprinkling distribution S(t), are the successive entries of the atom
in the trapping zone p ≤ ptrap during its random walk in momentum space.
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In the general theory of stochastic processes, the sprinkling distribution is known as
the density of a renewal process, or the ‘renewal density’10. Schematically, a renewal
process is a statistical process in which a device, say a lightbulb, is installed at time
t = 0, until it fails and is replaced at time t = τ1 (random variable), until the new device
fails and is replaced at time t = τ1+τ2, . . . . The renewal density indicates (statistically)
when the devices must be replaced.

Renewal processes are ubiquitous in quantum optics although they are not usually
named as such. Consider, for example, the sequence of fluorescence photons emitted
by a single atom excited by a resonant laser field (single atom resonance fluorescence).
A very important quantity characterizing such a sequence is the so-called second-order
correlation function

G2(t) = 〈E−(0)E−(t)E+(t)E+(0)〉 (4.43)

where E− and E+ are the negative and positive frequency parts, respectively, of the
electric field operator. It can be shown that G2(t) is the probability of having a sponta-
neous emission at time t = 0 and another one at time t , not necessarily the next one. It
is clear that G2(t) is a renewal density. More recently, attention has also been paid to
the waiting time distribution W (τ ) (or ‘delay function’, see Section 2.3.3), giving the
distribution of the time intervals between two successive spontaneous emissions. The
two distributions G2(t) and W (τ ) are related by an equation

G2(t) = W (t) +
∫ t

0
dtl W (t − tl)G2(tl), (4.44)

which is identical to the renewal equation (4.41) giving the sprinkling distribution, with
the correspondence W → P and G2 → S (see, for example, eq. (6.19) in [Rey83], eq.
(4.13) in [RDC88] or eq. (45) in [PlK98]).

4.4.3 Asymptotic behaviour. Broad versus narrow distributions

We now investigate the long time behaviour of S(t). Suppose first that µ > 1 so
that 〈τ 〉 is finite. Using eq. (4.18), which states that the small-s expansion of LP(s)
is 1 − 〈τ 〉s + · · · , one gets:

LS(s) 

s→0

1

〈τ 〉
1

s
− 1 · · · . (4.45)

This shows that, for large times, S(t) is constant, equal to 1/〈τ 〉. We thus find
an a priori obvious result. For large times, the probability of finding a particular
event between t and t + dt is a constant equal to the inverse of the average time
interval 〈τ 〉 between two successive events. In other words, the set of events M1,
M2, . . . , Mn, . . . has a constant density equal to 1/〈τ 〉.

10 This connection was made in [BaB00], see Section 10.2.1.
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4.4 Sprinkling distribution 59

Equation (4.45) is in fact valid for any probability distribution P(τ ) with a finite average
value. This is in particular the case of the sprinkling distribution G2(t) associated with
single atom resonance fluorescence, since W (t), which plays the role of P(t), is a sum
of exponentials with a finite mean value. Another simple example is provided by the
Poisson process which enables us to check eq. (4.45). In this case, the waiting time
distribution is P(τ ) = �e−�τ and one expects the rate S(t) of occurrence of the events
to be constant, for any time including small times. Using eq. (4.42) and LP(s) =
�/(� + s), one obtains LS(s) = �/s. This agrees with the first term of eq. (4.45) but,
in this case, the relation is exact, for any s. We get S(t) = � for all t , as expected for a
Poisson process.

Such a result is no longer valid when µ < 1. We must now use eq. (4.14) which,
inserted into eq. (4.42), gives11

LS(s) 

s→0

1

�(1 − µ)
(τbs)−µ + subleading terms. (4.46)

Using eq. (4.24) and the identity

�(µ)�(1 − µ) = π

sin(πµ)
, (4.47)

one finally gets12

S(t) 

t→∞

sin(πµ)

π

1

τb

(τb

t

)1−µ

+ O
[
(τb/t)2−2µ

]
. (4.48)

Note that S(t) has the dimension of the inverse of a time, but goes to zero when
t → ∞. This is related to the fact that, as the time t increases, the probability of
drawing a large value of τ , of the order of t itself, remains constant, so that the
mean density of events decreases. In such a process, the rate of events decreases
at long times due to a purely statistical property (〈τ 〉 = ∞) while the distribution
P(τ ) of the increments τi is perfectly stationary. The identification of this unusual
feature in laser cooling is one of the most salient results of the presented statistical
approach.

This also means that the observation of S(t) allows one to infer the starting
‘date’ (t = 0) of the process – which would of course be impossible to do for
µ > 1. In other words, time translation invariance is broken for µ < 1 and the
process ‘ages’. Such a scenario was discussed in the context of glassy dynamics
in [Bou92, BoD95, BCK97]. The sprinkling distribution S(t) associated with a
broad distribution P(t) therefore exhibits interesting new features compared with
the usual case where P(t) has a finite mean value.

11 If µ < 1/2, the subleading terms of eq. (4.46) are constant terms plus terms in (τbs)1−2µ. If µ > 1/2, these
corrections are in (τbs)1−2µ.

12 If µ = 1, logarithmic terms appear.
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